Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner.

نویسندگان

  • Joni E Lima
  • Soichi Kojima
  • Hideki Takahashi
  • Nicolaus von Wirén
چکیده

Root development is strongly affected by the plant's nutritional status and the external availability of nutrients. Employing split-root systems, we show here that local ammonium supply to Arabidopsis thaliana plants increases lateral root initiation and higher-order lateral root branching, whereas the elongation of lateral roots is stimulated mainly by nitrate. Ammonium-stimulated lateral root number or density decreased after ammonium or Gln supply to a separate root fraction and did not correlate with cumulative uptake of (15)N-labeled ammonium, suggesting that lateral root branching was not purely due to a nutritional effect but most likely is a response to a sensing event. Ammonium-induced lateral root branching was almost absent in a quadruple AMMONIUM TRANSPORTER (qko, the amt1;1 amt1;2 amt1;3 amt2;1 mutant) insertion line and significantly lower in the amt1;3-1 mutant than in the wild type. Reconstitution of AMT1;3 expression in the amt1;3-1 or in the qko background restored higher-order lateral root development. By contrast, AMT1;1, which shares similar transport properties with AMT1;3, did not confer significant higher-order lateral root proliferation. These results show that ammonium is complementary to nitrate in shaping lateral root development and that stimulation of lateral root branching by ammonium occurs in an AMT1;3-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis.

Deposition of ammonium (NH₄+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH₄+ is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not L...

متن کامل

Nitrate-Regulated Glutaredoxins Control Arabidopsis Primary Root Growth.

Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabi...

متن کامل

Ammonium Inhibition of Arabidopsis Root Crowth Can Be Reversed by Potassium and by Auxin Resistance Mutations aux7, axr7, and axr2'

A nove1 effect of ammonium ions on root growth was investigated to understand how environmental signals affect organ development. Ammonium ions (3-12 mM) were found to dramatically inhibit Arabidopsis thaliana seedling root growth in the absence of potassium even if nitrate was present. This inhibition could be reversed by including in the growth medium low levels (20-100 PM) of potassium or al...

متن کامل

Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2.

A novel effect of ammonium ions on root growth was investigated to understand how environmental signals affect organ development. Ammonium ions (3-12 mM) were found to dramatically inhibit Arabidopsis thaliana seedling root growth in the absence of potassium even if nitrate was present. This inhibition could be reversed by including in the growth medium low levels (20-100 microM) of potassium o...

متن کامل

Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2010